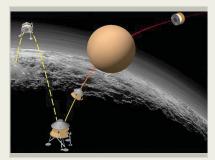
Pluto Hop, Skip, and Jump

Completed Technology Project (2017 - 2018)

Project Introduction


Imagine a craft that could enter Pluto's atmosphere at 14 km/s and deliver a 200 kg lander to the surface using aerodynamic drag and just a few kg of propellant. Pluto's surface pressure is just 10 millionths of Earth's, but its atmosphere is about 7 times higher than Earth's and its volume is about 350 times the volume of Pluto itself. Over a several hundred kilometer entry distance, this ultra-low ballistic coefficient craft can dissipate over 99.999% of its initial kinetic energy, resulting in a terminal velocity comparable to or less than past planetary landers or rovers. With this architecture, the total propellant requirement for landing on Pluto is less than 3.5 kg! After making science measurements at its initial landing site, the lander switches to hopper mode, taking advantage of the low gravitational acceleration (0.063 gee) and a modest propellant store to literally hop, skip, and jump around the surface, sometimes kilometers at a time, investigating features of interest. The proposed concept would enable in-situ surface science at Pluto with low overall mass, a reasonable cost, and in a timeframe of about 10-15 years.

Anticipated Benefits

The proposed concept would enable in-situ surface science at Pluto with low overall mass, a reasonable cost, and in a timeframe of about 10-15 years.

Primary U.S. Work Locations and Key Partners

Potential Pluto Hop, Skip, and Jump mission. Credits: Benjamin Goldman

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions	2	
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)		
Technology Areas		
Target Destination		
Images	4	
Links	4	

NASA Innovative Advanced Concepts

Pluto Hop, Skip, and Jump

Completed Technology Project (2017 - 2018)

Organizations Performing Work	Role	Туре	Location
Global Aerospace	Lead	Industry	Irwindale,
Corporation	Organization		California

Primary U.S. Work Locations

California

Project Transitions

April 2017: Project Start

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Global Aerospace Corporation

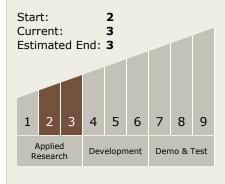
Responsible Program:

NASA Innovative Advanced Concepts

Project Management

Program Director:

Jason E Derleth


Program Manager:

Eric A Eberly

Principal Investigator:

Benjamin Goldman

Technology Maturity (TRL)

Pluto Hop, Skip, and Jump

Completed Technology Project (2017 - 2018)

January 2018: Closed out

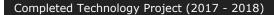
Closeout Summary: This is the Final Report from Global Aerospace Corporatio n on this NIAC effort (Grant Nos.: NNx17AJ71G and 80NSSC18K0062) to develo p the Pluto Hop, Skip, and Jump mission concept. We sought out to establish th e feasibility of using a large inflatable drag device to decelerate and land on Plut o from interplanetary speed (~14 km/s) using only the Pluto atmosphere and ju st a few kilograms of propellant. The design and analysis efforts in Phase I indic ated that this is feasible. Aerodynamic heating and loads were found to be order s of magnitude less than typical planetary entries due to the ultra-low ballistic c oefficient craft and the low density and large scale height of the Pluto atmospher e. The deceleration system is capable of delivering a 200-kg lander-hopper to th e surface or inserting an orbiter of a similar mass using aerocapture. Mission an alysis work led to a reference mission with Earth launch in 2029, Jupiter assist i n 2030, and Pluto arrival in 2040. Global Aerospace Corporation and its research partner, ILC Dover, have documented in this report the results of the design and analytical modeling efforts during the contract period (9 May 2017 - 9 February 2018). Key accomplishments include: •Refined atmospheric models using the m ost recent New Horizons measurements and established the system-level requir ements for a reference mission design, •Performed interplanetary trajectory ana lysis to select a reference launch and arrival condition and analyzed Pluto arrival approach conditions to enable a lander mission, •Used planetary aeroassist simu lations to study the Pluto entry environment conditions including convective hea ting, g-loads, dynamic pressures, and evaluated the effect of atmospheric variati on on the decelerator performance, •Performed approach and landing analysis t o determine the possible Pluto landing site locations based on the arrival geomet ry, and also performed an aerocapture analysis to evaluative feasibility of orbit i nsertion, •Performed static structural, dynamic aeroelastic, CFD aerothermodyn amics, and thermal analysis leading to a conceptual decelerator design, •Develo ped a feasible materials solution for the decelerator envelope using conventional materials and softgoods fabrication techniques, generated an envelope patternin g design, developed a load-distribution scheme, and generated an envelope syst em mass breakdown, •Designed a lander-hopper payload, selected science payl oad components, evaluated hop performance at the surface, and generated a m ass breakdown, •Developed the integrated system conceptual design and mass breakdown.

Closeout Link: https://www.nasa.gov/directorates/spacetech/niac/2017_Phase _I_Phase_II/Pluto_Hop_Skip_Jump

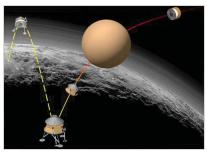
Technology Areas

Primary:

- TX09 Entry, Descent, and Landing
 - └ TX09.2 Descent
 - ─ TX09.2.1 Aerodynamic Decelerators


Target Destination

Others Inside the Solar System


NASA Innovative Advanced Concepts

Pluto Hop, Skip, and Jump

Images

Project Image
Potential Pluto Hop, Skip, and Jump mission. Credits: Benjamin Goldman (https://techport.nasa.gov/imag e/102258)

Links

NASA.gov Feature Article (https://www.nasa.gov/directorates/spacetech/niac/2017_Phase_I_Phase_II/Pluto_Hop_Skip_Jump)

